FAQs \& their solutions for Module 7:

Bra-Ket Algebra and LHO-II

Question1: If $\alpha|A\rangle=|P\rangle$, show that $\langle P|=\langle A| \bar{\alpha}$ where $\bar{\alpha}$ is the adjoint of the operator α.

Solution1:

$$
\begin{aligned}
& \langle A| \bar{\alpha}|B\rangle=\overline{\langle B| \alpha|A\rangle}=\overline{\langle B \mid P\rangle} \\
& =\langle P \mid B\rangle
\end{aligned}
$$

Since the above equation is valid for arbitrary $|B\rangle$ we have

$$
\begin{equation*}
\langle P|=\langle A| \bar{\alpha}=\text { conjugate of } \alpha|A\rangle \tag{1}
\end{equation*}
$$

Question2: Show that $\overline{\alpha \beta}=\bar{\beta} \bar{\alpha}$ where $\bar{\alpha}$ and $\bar{\beta}$ are the adjoints of the operators α and β.
Solution2: We consider two linear operators α and β whose adjoints are denoted by $\bar{\alpha}$ and $\bar{\beta}$, respectively. Let

$$
|P\rangle=\alpha \beta|A\rangle
$$

then

$$
\langle P|=\langle A| \overline{\alpha \beta}
$$

Further, if $|Q\rangle=\beta|A\rangle$, then $|P\rangle=\alpha|Q\rangle$ and

$$
\langle P|=\langle Q| \bar{\alpha}=\langle A| \bar{\beta} \bar{\alpha}
$$

Thus

$$
\begin{equation*}
\overline{\alpha \beta}=\bar{\beta} \bar{\alpha} \tag{2}
\end{equation*}
$$

and, in general,

$$
\begin{equation*}
\overline{\alpha \beta \gamma \cdots}=\cdots \bar{\gamma} \bar{\beta} \bar{\alpha} \tag{3}
\end{equation*}
$$

Question3: We consider the linear harmonic oscillator problem for which

$$
\begin{equation*}
H=\frac{p^{2}}{2 \mu}+\frac{1}{2} \mu \omega^{2} x^{2} \tag{4}
\end{equation*}
$$

We introduce the operators

$$
\begin{equation*}
a=\frac{1}{(2 \mu \hbar \omega)^{1 / 2}}(\mu \omega x+i p) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{a}=\frac{1}{(2 \mu \hbar \omega)^{1 / 2}}(\mu \omega x-i p) \tag{6}
\end{equation*}
$$

where we have assumed $H=\bar{H}, \quad p=\bar{p}, \quad x=\bar{x}$. Show that $a H-H a=[a . H]=\hbar \omega a$
and
$\bar{a} H-H \bar{a}=[\bar{a}, H]=-\hbar \omega \bar{a}$
Solution3:

$$
\begin{align*}
\hbar \omega a \bar{a} & =\frac{1}{2 \mu}(\mu \omega x+i p)(\mu \omega x-i p) \\
& =\frac{1}{2 \mu}\left[\mu^{2} \omega^{2} x^{2}+p^{2}-i \mu \omega(x p-p x)\right] \\
& =H+\frac{1}{2} \hbar \omega \tag{9}
\end{align*}
$$

where we have used the commutation relation
$[x, p]=x p-p x=i \hbar$
Similarly

$$
\begin{equation*}
\hbar \omega \bar{a} a=H-\frac{1}{2} \hbar \omega \tag{11}
\end{equation*}
$$

Thus

$$
\begin{equation*}
H=\frac{1}{2} \hbar \omega(\bar{a} a+a \bar{a}) \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
a \bar{a}-\bar{a} a=[a, \bar{a}]=1 \tag{13}
\end{equation*}
$$

From Eq. (4)

$$
\begin{equation*}
\hbar \omega a \bar{a} a=H a+\frac{1}{2} \hbar \omega a \tag{14}
\end{equation*}
$$

and from Eq. (6)

$$
\begin{equation*}
\hbar \omega a \bar{a} a=a H-\frac{1}{2} \hbar \omega a \tag{15}
\end{equation*}
$$

Thus

$$
\begin{equation*}
a H-H a=[a, H]=\hbar \omega a \tag{16}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\bar{a} H-H \bar{a}=[\bar{a}, H]=-\hbar \omega \bar{a} \tag{17}
\end{equation*}
$$

Question4: For the linear harmonic oscillator problem we have
$H|n\rangle=E_{n}|n\rangle ; \quad E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega ;$
$n=0,1,2,3, \ldots$
The eigenkets $|n\rangle$ form a complete set of orthonormal kets

$$
\begin{equation*}
\langle m \mid n\rangle=\delta_{m n} \tag{19}
\end{equation*}
$$

Further,
$a|n\rangle=\sqrt{n}|n-1\rangle$
and
$\bar{a}|n\rangle=\sqrt{n+1}|n+1\rangle$
Calculate $\langle x\rangle=\langle n| x|n\rangle ;\left\langle x^{2}\right\rangle=\langle n| x^{2}|n\rangle ;\langle p\rangle=\langle n| p|n\rangle \&\left\langle p^{2}\right\rangle=\langle n| p^{2}|n\rangle \quad$ and also the uncertainty product $\Delta x \Delta p$, where $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$ and $\Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}$.

Solution4:

Thus

$$
\begin{equation*}
x=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}(a+\bar{a}) \tag{22}
\end{equation*}
$$

$$
\begin{align*}
\langle n| x|n\rangle & =\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}\langle n| a+\bar{a}|n\rangle \\
& =\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}[\sqrt{n}\langle n \mid n-1\rangle+\sqrt{n+1}\langle n \mid n+1\rangle] \\
& =0 \quad \text { [using the orthonormality condition] } \tag{23}
\end{align*}
$$

$$
\begin{align*}
\langle n| x^{2}|n\rangle=(\langle n| a a \mid & n\rangle+\langle n| a \bar{a}|n\rangle+\langle n| \bar{a} a|n\rangle+\langle n| \overline{a a}|n\rangle) \\
& =\frac{\hbar}{2 \mu \omega}[0+(n+1)+n+0] \\
& =\frac{\hbar}{\mu \omega}\left(n+\frac{1}{2}\right) \tag{24}
\end{align*}
$$

Thus

$$
\begin{equation*}
\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}=\sqrt{\frac{\hbar}{\mu \omega}\left(n+\frac{1}{2}\right)} \tag{25}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\langle n| p|n\rangle=0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\langle n| p^{2}|n\rangle=\mu \omega \hbar\left(n+\frac{1}{2}\right) \tag{27}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\Delta p=\sqrt{\left\langle p^{2}\right\rangle-\langle p\rangle^{2}}=\sqrt{\mu \omega \hbar\left(n+\frac{1}{2}\right)} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta x \Delta p=\left(n+\frac{1}{2}\right) \hbar \tag{29}
\end{equation*}
$$

The minimum uncertainty product $\left(=\frac{1}{2} \hbar\right)$ occurs for the ground state $(n=0)$.

Question5: Coherent states are the eigenkets of the operator a :

$$
\begin{equation*}
a|\alpha\rangle=\alpha|\alpha\rangle \tag{30}
\end{equation*}
$$

where a is the annihilation operator defined through Eq. (2). Expand $|\alpha\rangle$ in terms of the kets $|n\rangle$ and normalize $|\alpha\rangle$ to obtain

$$
\begin{equation*}
|\alpha\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \sum \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{31}
\end{equation*}
$$

The eigenvalue α can be an arbitrary complex number.
Solution5: We expand $|\alpha\rangle$ in terms of the kets $|n\rangle$

$$
\begin{equation*}
|\alpha\rangle=\sum_{n=0,1 . .} C_{n}|n\rangle \tag{32}
\end{equation*}
$$

Now

$$
\begin{equation*}
a|\alpha\rangle=\sum C_{n}|n\rangle=\sum_{n=1}^{\infty} C_{n} \sqrt{n}|n-1\rangle \tag{33}
\end{equation*}
$$

Also

$$
\begin{equation*}
a|\alpha\rangle=\alpha|\alpha\rangle=\alpha \sum C_{n}|n\rangle \tag{34}
\end{equation*}
$$

Thus

$$
\alpha\left(C_{0}|0\rangle+C_{1}|1\rangle+\cdots\right)=C_{1}|0\rangle+C_{2} \sqrt{2} \quad|1\rangle+C_{3} \sqrt{3} \quad|2\rangle+\cdots
$$

or

$$
\begin{aligned}
& C_{1}=\alpha C_{0}, \quad C_{2}=\frac{\alpha C_{1}}{\sqrt{2}}=\frac{\alpha^{2}}{\sqrt{2}} C_{0} \\
& C_{3}=\alpha \frac{C_{2}}{\sqrt{3}}=\frac{\alpha^{3}}{\sqrt{3!}} C_{0}, \ldots
\end{aligned}
$$

In general,

$$
\begin{equation*}
C_{n}=\frac{\alpha^{n}}{\sqrt{n!}} C_{0} \tag{35}
\end{equation*}
$$

Thus

$$
\begin{equation*}
|\alpha\rangle=C_{0} \sum_{n} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{36}
\end{equation*}
$$

If we normalize $|\alpha\rangle$, we would get

$$
\begin{aligned}
1 & =\langle\alpha \mid \alpha\rangle=\left|C_{0}\right|^{2} \sum_{n} \sum_{m} \frac{\alpha^{n} \alpha^{* m}}{\sqrt{n!} \sqrt{m!}} \delta_{n m} \\
& =\left|C_{0}\right|^{2} \sum_{n} \frac{\left(|\alpha|^{2}\right)^{n}}{n!}=\left|C_{0}\right|^{2} \exp \left(|\alpha|^{2}\right)
\end{aligned}
$$

or

$$
\begin{equation*}
C_{0}=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \tag{37}
\end{equation*}
$$

within an arbitrary phase factor. Substituting in Eq. (24) we obtain

$$
\begin{equation*}
|\alpha\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \sum \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{38}
\end{equation*}
$$

Notice that there is no restriction on the value of α; i.e., α can take any complex value.

Question6: $|\alpha\rangle$ and $|\beta\rangle$ are normalized eigenkets of a belonging to eigenvalues α and β. Evaluate $|\langle\alpha \mid \beta\rangle|^{2}$ and show that the eigenkets (belonging to different eigenvalues) are not orthogonal.
Solution6: $|\alpha\rangle$ and $|\beta\rangle$ are eigenkets of a belonging to eigenvalues α and β, then

$$
\begin{align*}
|\langle\alpha \mid \beta\rangle|^{2} & =\left|\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \exp \left(-\frac{1}{2}|\beta|^{2}\right) \sum_{n} \sum_{m} \frac{\alpha^{* n} \beta^{m}}{\sqrt{n!m!}}\langle n \mid m\rangle\right|^{2} \\
& =\exp \left(-|\alpha|^{2}-|\beta|^{2}\right)\left|\sum_{n} \frac{\left(\alpha^{*} \beta\right)^{n}}{n!}\right|^{2} \\
& =\exp \left(-|\alpha|^{2}-|\beta|^{2}+\alpha^{*} \beta+\alpha \beta^{*}\right)=\exp \left(-|\alpha-\beta|^{2}\right) \tag{39}
\end{align*}
$$

Thus the eigenkets are not orthogonal (this is because a is not a real operator).

Question7: Assume that at $t=0$, the oscillator is in the coherent state

$$
\begin{equation*}
|\Psi(t=0)\rangle=|\alpha\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \sum \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{40}
\end{equation*}
$$

What will be the time evolution of the state $|\Psi(t)\rangle$?

Solution7:

$$
\begin{equation*}
|\Psi(t=0)\rangle=|\alpha\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \sum \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \tag{41}
\end{equation*}
$$

Since $|n\rangle$ are the eigenkets of the Hamiltonian, we will have

$$
\begin{equation*}
|\Psi(t)\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \sum \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \exp \left[-\frac{i E_{n} t}{\hbar}\right] \tag{42}
\end{equation*}
$$

Since

$$
\begin{equation*}
E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega ; \quad n=0,1,2,3, \ldots \tag{43}
\end{equation*}
$$

we get
$|\Psi(t)\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \sum \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \exp \left[-i\left(n+\frac{1}{2}\right) \omega t\right]$

Question8:

(a) In continuation of the previous problem, calculate

$$
\langle\Psi(t)| x|\Psi(t)\rangle \text { and } \quad\langle\Psi(t)| p|\Psi(t)\rangle
$$

(b) Compare the results with that of a classical oscillator.

Solution8:

We start with

$$
\begin{equation*}
|\Psi(t)\rangle=\exp \left(-\frac{1}{2}|\alpha|^{2}\right) \sum \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \exp \left[-i\left(n+\frac{1}{2}\right) \omega t\right] \tag{45}
\end{equation*}
$$

Thus

$$
\begin{align*}
& \langle\Psi(t)| \bar{a}|\Psi(t)\rangle=e^{-N} \sum_{m} \sum_{n} \frac{\alpha^{* m} \alpha^{n}}{(m!n!)^{1 / 2}} e^{i(m-n) \omega t}(n+1)^{1 / 2}\langle m \mid n+1\rangle \\
& =e^{i \omega t} e^{-N} \sum \frac{\alpha^{*}|\alpha|^{2 n}}{n!}=\alpha^{*} e^{i \omega t} \tag{46}
\end{align*}
$$

where we have used the relation $\bar{a}|n\rangle=\sqrt{n+1}|n+1\rangle$. Similarly, using $a|n\rangle=\sqrt{n}|n-1\rangle \quad$ (or, taking the complex conjugate of the above equation), we would get

$$
\begin{equation*}
\langle\Psi(t)| a|\Psi(t)\rangle=\alpha e^{-i \omega t} \tag{47}
\end{equation*}
$$

Assuming α to be real we get
$\langle\Psi(t)| \bar{a}+a|\Psi(t)\rangle=2 \alpha \cos \omega t$
Since
$x=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2}(a+\bar{a})$
Thus
$\langle x\rangle=\langle\Psi(t)| x|\Psi(t)\rangle=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} 2 \alpha \cos \omega t$
or

$$
\begin{equation*}
\langle x\rangle=x_{0} \cos \omega t \tag{50}
\end{equation*}
$$

where

$$
\begin{equation*}
x_{0}=\left(\frac{\hbar}{2 \mu \omega}\right)^{1 / 2} 2 \alpha \tag{51}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
p=i\left(\frac{\mu \hbar \omega}{2}\right)^{1 / 2}(\bar{a}-a) \tag{52}
\end{equation*}
$$

Thus

$$
\begin{align*}
\langle p\rangle & =i\left(\frac{\mu \hbar \omega}{2}\right)^{1 / 2}[\langle\Psi(t)| \bar{a}|\Psi(t)\rangle-\langle\Psi(t)| a|\Psi(t)\rangle] \\
& =i\left(\frac{\mu \hbar \omega}{2}\right)^{1 / 2} \alpha\left[e^{i \omega t}-e^{-i \omega t}\right] \\
& =-\left(\frac{\mu \hbar \omega}{2}\right)^{1 / 2} 2 \alpha \sin \omega t \tag{53}
\end{align*}
$$

or

$$
\begin{equation*}
\langle p\rangle=-\mu \omega x_{0} \sin \omega t=\mu \frac{d\langle x\rangle}{d t} \tag{54}
\end{equation*}
$$

which represents the classical equation of motion.

